Silylenoids, R₃SiX (X = halogen, M = alkali metal), are important intermediates in many reactions.¹ Yet, in contrast to the extensively studied analogous carbenoids, R₂CX₂M,² they have been little studied. Due to their high reactivity via self-condensation³ or α-elimination of MX producing reactive silylenes,⁴ very little is known about their molecular structure. Such structural information is important for understanding the intriguing multiple reactivity of halosilylenoids toward nucleophiles,⁵,⁶ electrophiles,⁷ and silylene trapping agents.⁸,⁹ An X-ray molecular structure is available only for a dimeric form of a methoxysilylenoid. ³b Other known stable silylenoids include thio-¹⁰ and halosilylenoids,¹¹ for which, however, there is no structural data.

In this paper we report the synthesis, the molecular and electronic structure, and several reactions of the first isolated fluorosilylenoid ¹, exhibiting a tricoordinate silicon. Analogous stable carbenoids have not been reported.

The fluorosilylenoid ¹ was prepared in 40% yield by reaction of fluorobromosilane ² with silyllithium ³ in THF (eq 1).⁶

\[
\text{(R}_3\text{Si)}_2\text{SiFBr} + \text{THF} \rightarrow \text{(R}_3\text{Si)}_2\text{SiFLi} + 3\text{THF}
\]

R₃Si = t-Bu₂MeSi

crystallizes at −30 °C from a 1:2 THF/hexane solution as yellow crystals, and its molecular structure as determined by X-ray crystallography is shown in Figure 1.¹⁷

The X-ray molecular structure reveals that ¹ is a silylenoid with a tricoordinate silicon and a lithium atom bonded to fluorine. The Si1···Li distance is 3.21 Å, significantly longer than that in THF solvated lithiosilanes (2.64–2.77 Å),⁸ indicating weak or no Si···Li bonding. Si1 in ¹ is strongly pyramidal; the sum of the bond angles around Si1 is 307.6°, indicating a weaker Si–F bond in ¹ than that in fluorosilanes.⁸ The Si1–F distance 1.70 Å is relatively long,⁹ indicating a weaker Si–F bond in ¹ than that in fluorosilanes.

Silylenoid ¹ was studied computationally¹⁰ using density functional theory (DFT).¹⁰b The calculated structure of ¹ (see Supporting Information) is similar in its general shape to the experimental structure, but there are significant differences in r(Si–F) (1.70 Å (exptl), 1.84 Å (theor))¹¹ and r(F–Li) (1.77 Å (exptl), 1.82 Å (theor)). The calculations show that the carbene silylenoid ¹ is by 4.8 kcal/mol lower in energy than the tetracoordinate isomer (R₂Si₃SiF₂Br)₁₂ (R₂Si = t-Bu₂MeSi), ⁴,¹¹b in which r(Si–F) = 1.75 Å and r(Si–Li) = 2.76 Å.

The NMR δ²⁹Si(¹) chemical shift of ¹ (107 ppm) is shifted significantly downfield compared with (t-Bu₂MeSi)(HSiF)₂ (22.5 ppm),¹³,¹⁴ (t-Bu₂MeSi)₂SiH₂ (−120 ppm), and (t-Bu₂MeSi)₂HSiLi·3THF (−190 ppm).¹⁵ The measured δ²⁹Si(¹) of ¹ is in very good agreement with the calculated¹⁰a δ²⁹Si (102 ppm using the X-ray coordinates¹⁸a) indicating that the silylenoid structure probably persists in THF solution.¹⁶b

The calculated charge distribution (NPA¹⁷b) of ¹ shows that which is overall neutral, is highly polarized; the positive charge (0.88 el.) is located on the Li₃THF fragment, while most of the negative charge resides on F (−0.74 el.) with −0.14 el. residing on the R₂Si fragment (charge on Si₁ = +0.14 el.). The NPA charge distribution in the tetracoordinate isomer ⁴ is similar: q(R₂Si₁) = −0.22; q(F) = −0.69; and q(Li₃THF) = +0.88. The calculated Si–F, Si–Li, and F–Li Wiberg bond orders (WBO)¹⁹b of ¹ are 0.38, 0.06, and 0.02, respectively, reflecting a covalent Si–F bond (although weaker than that in (H₃Si)₃SiF (WBO = 0.55, r(Si–F) = 1.66 Å, at B3LYP/6-311+G(d,p)) and no covalent bonding between Si–Li (or F–Li). In ¹, the Si–F, Si–Li, and F–Li Wiberg bond orders are 0.43, 0.13, and 0.0, respectively, reflecting a higher covalency in the Si–F and Si–Li bonds in comparison to ¹. The charge distribution and the WBOs in ¹ point to a structure with an R₂SiF⁺ anion attracted to a (Li₃THF)− cation.

Analysis of the resonance structures (RS) of the fully optimized (at B3LYP/6-311+G(d)) (Me₃Si)₂SiLi·3MeO⁻ ¹⁺ (a model of ¹, r(Si–F) = 1.84 Å), using NRT¹⁹c calculations, shows that ¹⁺ is the most prominent RS of ¹. The localized NBOs¹⁹d of ¹⁺ show a lone pair orbital on the central Si atom with an occupancy of 1.53 el. and a highly polarized Si–F NBO in which 90% of the charge density resides on F and only 10% resides on Si. A minor contributing RS is ¹⁻ which consists of a silylene fragment and F⁻·3MeO⁺.²⁰ The NRT bond orders¹⁹c of ¹⁺ indicate its high ionicity; i.e., the Si–F BOs are 0.93 (total) and 0.76 (ionic), while the Si–Li and F–Li bonds are entirely ionic. In summary, based...
on the calculations, I is best described by RS \(^{1}a\) with a minor contribution of \(^{1}b\).\(^{21}\)

The calculated energy for the dissociation of I to RSi: and FLi-3THF is \(\Delta G^{298} = 19.5\) kcal/mol (\(\Delta H^{298} = 33.5\) kcal/mol), consistent with the small dissociation of an RS analogous to \(^{1}b\).\(^{22}\)

1 exhibits versatile reactivity, in line with its silylenoid structure. It reacts as a nucleophile with MeCl, PhH\(_{2}\) SiCl, water, and methanol (Scheme 1, path i). It reacts as an electrophile with MeLi (Scheme 1, path ii). With BuLi in THF 1 is a precursor of \(\alpha\)-lithiosilyl radical \(5a^{3}\) (Scheme 1, path iii). The silylenoid type reactivity is revealed when 1 is stirred with lithium or sodium powder in THF to yield \(\alpha\)-lithium (5a) or \(\alpha\)-sodium (5b) radicals, respectively (Scheme 1, path iii).\(^{23}\) When a THF solution of I is kept under sunlight at room temperature for a week or when solid 1 is heated to 120 °C (0.5 h) disilene \(6^{24}\) is formed (Scheme 1, path iv), probably via dimerization of RSi:.

In summary, we have isolated the first fluorosilylenoid, determined its molecular structure by X-ray crystallography and its electronic structure by DFT calculations, and demonstrated its versatile reactivity. We are continuing to explore this interesting new class of reactive intermediates.

Acknowledgment. This research was supported by the Israel Science Foundation, administered by the Israel Academy of Sciences and Humanities, the Fund for the Promotion of Research at the Technion, and the Minerva Foundation in Munich. M.B., B.T., and D.B.-Z. are grateful to the Ministry of Immigrant Absorption, State of Israel, for a Kamea scholarship.

Supporting Information Available: CIF file of the X-ray structure of I, the syntheses and spectroscopic data of I, 1, and 2, and of reaction products of 1 in Scheme 1, calculated structures of I, 1, and 4, and full list of authors of ref 10a. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(6) Experimental details are given in the Supporting Information. NMR (in THF with a DMSO-d6 capillary as external standard, d in ppm): (H) 1: 1.04 (36H, d, t-Bu2MeSi); 0.07 (6H, s, t-Bu2MeSi); 1.0L 0.92 (t-Bu2MeSi); 28.5–27.1 (t-Bu2MeSi); 27.27 (Si); 27.10 (Si, t-Bu2MeSi); 5.60 (2H, d, t-Bu2MeSi). (7) Crystal data of I (180 K): Cs\(_{3}\)H\(_{5}\)F\(_{8}\); Fw 585.04; monoclinic; space group P2\(_{1}\)1/c; a = 11.18(2) Å, b = 18.49(2) Å, c = 19.33(4) Å, \(\beta = 111.40(3)^{\circ}\), \(V = 3721.5\) Å\(^{3}\), \(Z = 8\), \(D_{calcd} = 1.44\) mg/ml, \(R = 0.0681\) (I > 2(I), \(wR_{2} = 0.0206\) (all data), GOF = 0.963.

(8) Acknowledgments. This research was supported by the Israel Science Foundation, administered by the Israel Academy of Sciences and Humanities, the Fund for the Promotion of Research at the Technion, and the Minerva Foundation in Munich. M.B., B.T., and D.B.-Z. are grateful to the Ministry of Immigrant Absorption, State of Israel, for a Kamea scholarship.

Supporting Information Available: CIF file of the X-ray structure of I, the syntheses and spectroscopic data of I, 1, and 2, and of reaction products of 1 in Scheme 1, calculated structures of I, 1, and 4, and full list of authors of ref 10a. This material is available free of charge via the Internet at http://pubs.acs.org.